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Physical Sound Synthesis
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Motivation - Why Physically-based Sound
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http://www.youtube.com/watch?v=su6z9snjU-U

Motivation (Hieu)

“Easy” Condition
Unbounded Scene, Reflection only on Object

(A +Kk*)p(x) =0
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Motivation (Hieu)

“Easy” Condition
Unbounded Scene, Reflection only on Object

(A +Kk*)p(x) =0

|

p(x, 1) = p(x)e™”

Separation of Variable
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Motivation (Hieu)

“Easy” Condition
Unbounded Scene, Reflection only on Object

p(x,t) = |p(x)q(t)

p(®)lq(t)
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Motivation (Hieu)

“Easy” Condition
Unbounded Scene, Reflection only on Object

Need to solve for all frequencies,
time sample, object
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Motivation (Hieu)

“Easy” Condition
Unbounded Scene, Reflection only on Object

PRECOMPUTATION : RUNTIME SYNTHESIS

|

source
lacemen

u
[

.
GEOMETRY VIBRATION BEM OFFSET SURFACE EQUIVALENT PAT ; MODE LISTENING
+BC MODES + FREQS SOLUTION PRESSURE SOURCES = EVALUATION SUMMATION

Figure 2: Overview of Precomputed Acoustic Transfer (PAT)

Takes DAYS to solve for a
scene with a few second
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Motivation (Hieu)

“Easy” Condition
Unbounded Scene, Reflection only on Object

The Bottleneck is still the
BEM solver
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Motivation (Hieu)

Let’s solve “Hard” Condition
Bounded Scene, Lots of Reflection

p(x,t) = [p(x)lg(®)

Not necessarily true...
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Motivation (Hieu)

Let’s solve “Hard” Condition
Bounded Scene, Lots of Reflection

Let’s tackle the main problem by choosing a
different numerical solver.

“Harder Condition”...
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Motivation (Hieu)

Let’s solve “Hard” Condition
Bounded Scene, Lots of Reflection

Let’s tackle the main problem by choosing a
different numerical solver.

“Harder Condition”...
but simpler Success Condition
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Motivation (Hieu)

Let’s solve “Hard” Condition
Bounded Scene, Lots of Reflection

Let’s tackle the main problem by choosing a
different numerical solver.

“Harder Condition”...
but (MAYBE) simpler Success Condition
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Related Work

Directional Sources and Listeners in Interactive Sound Propagation
using Reciprocal Wave Field Coding

CHAKRAVARTY R. ALLA CHAITANYA®, Microsoft Research and McGill University
NIKUNJ RAGHUVANSHI*, Microsoft Research

KEITH W. GODIN, Microsoft Mixed Reality

ZECHEN ZHANG, Microsoft Research and Cornell University

DEREK NOWROUZEZAHRAI, McGill University

JOHN M. SNYDER, Microsoft Research

ACM Transactions on Graphics, 2020
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Ko Wonhyeok
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Precomputing initial source
and reflections

Fast and effective at Runtime

But,

memory hungry

hard to optimize

limited to small static scenes
solving propagation, not
synthesis
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Related Work

Monte Carlo Geometry Processing:
A Grid-Free Approach to PDE-Based Methods on Volumetric Domains

ROHAN SAWHNEY and KEENAN CRANE, Carnegie Mellon University

Walk on Sphere & Walk on Stars

e No pre-computation
e Unbiased

Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with
Neumann Boundary Conditions

ROHAN SAWHNEY*, Carnegie Mellon University, USA and NVIDIA, USA B u't
BAILEY MILLER", Carnegif Mellon University, USA )
IOANNIS GKIOULEKAS?", Carnegie Mellon University, USA
KEENAN CRANET, Carnegie Mellon University, USA

e Hard to get effective samples
in unbounded domain
e can't solve all PDEs...
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Solving Wave Equation with MCM (1)

Kelvin Transformations for Simulations on Infinite Domains

MOHAMMAD SINA NABIZADEH, University of California, San Diego
RAVI RAMAMOORTHI, University of California, San Diego
ALBERT CHERN, University of California, San Diego

(c) Analytically
known function

S
e ‘\..‘

(e) Final solution U(y)
on the inverted
domain
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(a) Exterior (b) Inverted / (£) Final solution u(x)
domain domain | (d)Solution V(y) to a ::; L:e original do-

transformed PDE

Physically-based sound rendering should be done on unbounded domain.
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Solving Wave Equation with MCM (2)
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(a) WoS-RR on an infinite domain (b) WoS-KT on the original domain

Main idea: Inverse the domain to make the unbounded infinity to become a
singularity in the center.
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Solving Wave Equation with MCM (3)

Monte Carlo Geometry Processing:
A Grid-Free Approach to PDE-Based Methods on Volumetric Domains

ROHAN SAWHNEY and KEENAN CRANE, Carnegie Mellon University

Kelvin Transformations for Simulations on Infinite Domains

MOHAMMAD SINA NABIZADEH, University of California, San Diego
RAVI RAMAMOORTHI, University of California, San Diego
ALBERT CHERN, University of California, San Diego

(c) Analytically
known function
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(€) Final solution U (y)
on the inverted
domain

Q Liny

(a) Exterior (b) Inverted (£) Final solution u(x)
domain domain on the original do-

(@ Solution V(y) toa

transformed PDE o

Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with
Neumann Boundary Conditions

ROHAN SAWHNEY", Carnegie Mellon University, USA and NVIDIA, USA
BAILEY MILLER’, Carnegie Mellon University, USA

IOANNIS GKIOULEKAS, Carnegie Mellon University, USA

KEENAN CRANET, Carnegie Mellon University, USA

fast preview

8%p(x, t)
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op(x,t)

22 2
=c“V ,t) +caV
c“Vep(x,t) + ca Y

, X €Q,

However, there is no stochastic representation of wave
equation in general domain.
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New Approach: Neural-Network based soln.

NeuralSound: Learning-based Modal Sound Synthesis with Acoustic

Transfer

XUTONG JIN, School of Computer Science, Peking University, China
SHENG LI, School of Computer Science, Peking University, China
GUOPING WANG, School of Computer Science, Peking University, China
DINESH MANOCHA, University of Maryland at College Park, U.S.A

Vibration Modes Acoustic Transfer
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Fig. 1. Learning-based approach for modal sound synthesis: We use neural networks to accelerate both modal analysis and acoustic transfer precomputation,

and evaluate the performance on many new and unseen objects. Our approach can solve both vibration and radiation for plausible sound effects within one
second per object on a GeForce RTX 3080 Ti GPU.

NeuralSound [SIGGRAPH 2022]
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Review

“Easy” Condition
Unbounded Scene, Reflection only on Object

p(x,t) = |p(x)q(t)

p(®)lq(t)
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Architecture of Neural Sound

Vibration Modes Acoustic Transfer

Maps

+

(LOBPCQG)

Mesh Hexahedron
Model
-;‘ >\l & :"'v-"'l 5 24 J

Mixed .
: . Radiation
Vibration
Solver
Solver

1L

The architecture consist of 2 parts:

- Mixed Vibration Solver: Obtain the modes of vibration of the object.
- Radiation Solve: Determine the sound pressure generated by each modes
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Architecture of Neural Sound

Vibration Modes Acoustic Transfer
Maps
A : : e, T (LOB+PCG) ﬂ
Mixed
o Radiation
Vibration
Solver
Solver
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Main Limitation

voxel-base has low-resolution, requires lots of computation
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Inspiration from Neural Rendering

Scene TensoRF-VM

Main Limitation

voxel-base has low-resolution, requires lots of computation
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Inspiration from Neural Rendering

Scene TensoRF-VM

Hybrid Neural-Explicit Representation

efficient representation — high quality, low memory, fast training
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Inspiration from Neural Rendering

Scene TensoRF-VM

Hybrid Neural-Explicit Representation
efficient representation — high quality, low memory, fast training

“explicit” representation — compatible with existing pipeline
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Result of Neural Sound
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https://docs.google.com/file/d/1modQpLhNZX1f0i8IDVLIU2lkRojokdhW/preview

Role Division

Nguyen Minh Hieu

e Coordinator, Model Design, Training

Siripon Sutthiwanna

e Dataset, Training

Ko Wonhyeok

e Dataset, Training
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